
LLNL-PROC-502951

An Optimal Process Launching
Strategy for Extreme Scale
Bootstrapping

J. D. Goehner, D. C. Arnold, D. H. Ahn, G. L. Lee

October 4, 2011

26th IEEE International Parallel & Distributed Processing
Symposium (IPDPS)
Shanhai, China
May 21, 2012 through May 25, 2012

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

An Optimal Process Launching Strategy for Extreme Scale Bootstrapping

Joshua D. Goehner and Dorian C. Arnold
University of New Mexico

Albuquerque, New Mexico, U.S.A.
m.ns udrnad l c@ ene o, .h ego ur dj[]

Dong H. Ahn and Gregory L. Lee
Lawrence Livermore National Laboratory

Livermore, California, U.S.A.
h 21 8,l 1 .le @ l]n ne ol ga v[

Abstract—All software systems that run on high-end com-
puting machines go through what we call a bootstrapping
phase. These software systems are deployed onto a set of
computing nodes and their initialization information is dis-
seminated. Efficient bootstrapping is essential for extreme-
scale machines. Many workloads on these machines depend
on fast bootstrapping. In particular, this phase is increasingly
on the critical path for interactive tools and newly emerging
many-task computation models. Previously, we implemented
the Lightweight Infrastructure-Bootstrapping Infrastructure
(LIBI) to support extreme-scale software systems during their
bootstrapping phase. In this paper, we propose a LIBI al-
gorithm that creates an optimal process launching strategy.
Our algorithm takes advantage of a novel performance model
for process launching strategies, to find the optimal strategy
given a specific computing system with a set of resources. Our
proof shows that the recommended process launching strategy
is optimal. Our performance evaluations demonstrate that our
algorithm decreases the time for LIBI to bootstrap a software
system by up to 50%.

Keywords-Runtime systems; system software; large scale
software systems

I. INTRODUCTION

High-end or high performance computing (HPC) systems
have grown tremendously in core counts over the past
decades, and this trend is expected to continue in the years
to come. On the most recent Top 500 list [1], a list released
twice every year chronicling the fastest, publicly-known
computing systems, 44.6% or almost half of the entries have
more than 8,192 cores, compared to only 3.0% just 5 years
ago. The list contains four systems with more than 200K
cores, the largest of which has 548,352 cores. Sequoia, the
first million core system, is expected to be delivered in 2012
with 1.6 million cores [2], and future extreme-scale systems
are projected to have on the order of tens to hundreds of
millions of cores by 2020 [3].

Most of the software-based applications, tools and system
services to be deployed on these systems must scale to full
system size to be effective. An important phase that affects
scalability is the software startup or bootstrapping phase. As
we depict in Figure 1, we define distributed-software infras-
tructure bootstrapping as the procedures of instantiating the
infrastructure’s processes on allocated computational nodes
and delivering the initialization information necessary for

these processes to complete their setup and to enter their
primary operational phases1.

An inefficient bootstrapping process can have a negative
impact on any large-scale software system. There are several
cases when this inefficiency can become an impediment to
software deployment and usefulness. For example, there is
a need for interactive, scalable HPC tools and services to
help in the detection, analysis, diagnosis and remediation
of functional and performance problems. It can be the
case, where the time it takes to deploy a tool is several
orders of magnitude longer than the time it takes for the
tool to perform its key function. Our experiences with our
own stack trace analysis tool (STAT) [4] demonstrated this
problem: a full-scale instance of STAT on the Lawrence
Livermore National Laboratory’s BlueGene/L system could
take minutes to start-up and subsequently, less than a single
second to perform its analysis.

Another example of the impedance of inefficient boot-
strapping is in the many-task computational model. In this
model of computing, an application is decomposed into
many (thousands and sometimes millions of) tasks and these
tasks are mapped to processes; processes are continuously
launched on the available computational resources through-
out the application’s entire execution. Therefore, process
bootstrapping can have a big impact on the performance
of the entire application run. Additionally, the more fine-
grained the tasks, the greater the impact of inefficient
bootstrapping.

In this paper, we focus on the process launching phase
of bootstrapping. Indeed, there exist many resource man-
agers (RMs) like LoadLeveler [5], LSF [6], PBS [7] and
SLURM [8] for bulk process launching. such systems lever-
age ad hoc strategies for process launching. Our primary
goal is to devise an optimal strategy for process launching
and to understand the impact of finding and using an
optimal strategy. In this context, our work makes several
contributions:

1) We have created a performance model for process
launching strategies;

1Technically, bootstrapping is not complete until every process has
acted upon its setup information; this final activity is indeed infrastructure
dependent.

(a)	
 (b)	
 (c)	
 (d)	

Bootstrap	

Complete!	

Ini6alize	

bootstrapping	

Instan6ate	

processes	

Transfer	

ini6aliza6on	
 data	

Figure 1. Distributed Application Bootstrapping: instantiating the distributed application’s processes and propagating to these processes their requisite
initialization information.

2) We have designed an algorithm for finding the optimal
process launching strategy given a specific system and
set of resources;

3) We present a proof that the recommended process
launching strategy is optimal;

4) We evaluate our algorithm’s costs for finding an opti-
mal strategy; and

5) We evaluate the performance impact of using an opti-
mal strategy for process launching versus an arbitrarily
chosen strategy.

Our results show that the cost of using our algorithm to
determine optimal process launch strategies is very cheap
even for 100K node counts and can yield significant per-
formance improvements over arbitrary or ad hoc strategies.
Furthermore, the impact of ad hoc strategies can be exac-
erbated when process launch is based on a slow sequential
mechanism, like ssh as compared to rsh. While this work
has the greatest impact in the context of systems for which
a bulk launching service that uses persistent daemons is
unavailable or undesirable, this work can also help to inform
the inter-connection topologies used for such bulk launchers.

The rest of this paper is outlined as follows. In Sec-
tion II, we describe the bulk process launching concept and
summarize related research and development projects. In
Section III, we describe our process launch performance
model. In Section IV, we also present our algorithm for
finding an optimal process launch strategy and offer a proof
of optimality. In Section V, we present our experimental
results that validate our performance model, validate our
algorithm’s optimality and evaluates our process launch
strategy using a real infrastructure. Finally, we conclude with
a summary of the contributions and potential impact of our
research.

II. BULK PROCESS LAUNCHING

There are two models for process launching: individual
and bulk. The difference between the individual and the
bulk launch models is the number of processes that are

capable of being launched in a single request. Individual
launch mechanisms are capable of launching only a single
process at a time while bulk launchers have the capability
of launching multiple processes. The most popular individ-
ual launch mechanism is a basic remote process creation
mechanism based on rsh or ssh. There are a myriad of
bulk launch services with different launching strategies as
we describe below. Indeed, some of these services may be
built on top of individual launch mechanisms.

Formally, the bulk process launching problem can be
defined as: given a set, P , of processes, a set, N , of nodes
and a mapping, M , that maps every element of P to exactly
one element of N , each process in P must be instantiated or
launched on its corresponding node in N . In this work, we
assume the mapping is injective and surjective or one-to-one
and onto. In practice, the mapping function may be non-
injective; that is, multiple processes may be mapped to the
same node. However, in this work, we consider the problem
of launching a single process onto each node: launching co-
located processes can be done more efficiently by using the
first launched process on each node as a local launching
agent than by using a remotely located launching agent [9],
[10]. A non-surjective mapping function, one in which not
every node has a process mapped to it, is possible but does
not make sense in practice. This would render unused nodes
in an allocation.

A. Bulk Process Launching Trees

We define a bulk process launching tree, T , as a tree of
processes such that a parent-child relationship in the tree
denotes a launcher-launchee relationship in the bulk launch
process. (The topology is a tree since each process can
only have a single creator.) Examples of different process
launching trees are shown in Figure 2. The topology of
the tree inherently determines the potential efficiency of
bulk process launching: disjoint branches of the tree can
be launched concurrently; however, processes that share an
ancestral relationships have inherent launching dependences.

(a) Chain (b) Flat (c) 2-ary Tree

Figure 2. Three distinct launch trees that start 15 processes.

B. Bulk Process Launching Frameworks

There are several frameworks that provide a bulk process
launch service. Generally, high-end hardware vendors pro-
vide their own specialized resource management and control
system which includes bulk-launch services. For example,
IBM’s BlueGene family implements its own control system
with bulk-launch services via a set of commands such as
mpirun [11], and Cray’s XT and XE family also provides
similar services through ALPS and aprun [12]. In addition,
there exists a myriad of other, more generic resource man-
agement software stacks that provide bulk process launching
capabilities: e.g., LoadLeveler [5], LSF [6], PBS [7] and
SLURM [8]. We will discuss these frameworks with respect
to their process launching strategies.

While some bulk launch services use less scalable topolo-
gies for process launch, like MPD, which employs a process
ring [13], other bulk launch services have incorporated tree
topologies into their process launching strategies [8], [9],
[10], [12]. Some of these do leverage less scalable flat trees,
but some do use a k-ary trees. In all cases, the choice of
launching topology, even if configurable, typically is ad hoc.

III. MODELING BULK PROCESS LAUNCHING

We now construct a model for bulk process launch latency,
the time that lapses between the initiation of the bulk process
launch request and the creation of the last process. This
model only considers launching a single process per node.
Given a process launch tree and other relevant parameters,
our model outputs launch latency. More specifically, our
model assumes each parent sequentially creates its respective
children and processes in disjoint branches create their chil-
dren concurrently as outlined by the algorithm in Figure 3,
which is executed by each process in the tree.

There are other aspects of bulk process launch latency
that are outside of the scope of our model. For example,
our model does not consider the time required to devise a
process launch tree nor does it consider the time required
to launch co-located processes. The repercussions of these
exclusions are discussed in Section IV-D.

launch(children):
SEQ: for each child in children, do
REM: create child on relevant node

Figure 3. Pseudo code for our bulk process launching model.

In a process launch tree, creation of child nodes is ordered
from left to right: for all x greater than or equal to 1, childx
must exist in order before can be a childx+1. We construct
our model for arbitrary trees leveraging base models for the
simple chain and flat trees. With the observation that generic
trees are just recurrences of these basic trees, our model for
an arbitrary tree is a recursive composition of these basic
models.

A. Modeling Chain Trees

In a tree with a chain topology, every node except the last
has exactly one child. This can be thought of as a 1-ary tree.
To model a chain, we consider the line in Figure 3 labeled
REM or remote launch time. This encompasses the time that
lapses between the invocation of the creation command at
a process’ parent and the time the newly created child is
ready to launch its first child.

As demonstrated in Figure 4, for a chain tree of n
processes, REM is repeated n− 1 times, the number of
ancestors of the last node in the tree. Generally, the time
it takes to launch a process p in a chain tree of n processes,
launch(p, chainn) can be formalized as:

launch(p, chainn) = |anc(p, chainn)| ∗REM (1)

where anc(p, t) is the set of ancestors of process p in tree
t, and chainn is a chain tree with n processes.

B. Modeling Flat Trees

In a tree with a flat topology, the root is the only parent
node – for process launching, the root process launches
every other process. To model a flat tree, we consider
the line in Figure 3 labeled SEQ or sequential wait time.

Figure 4. Modeling the launch of process p in a chain tree with 4 nodes.

Figure 5. Modeling the launch of process p in a flat tree with 4 nodes.

This encompasses the necessary time delay between two
subsequent launch commands.

As demonstrated in Figure 5, for a flat tree of n processes,
SEQ is repeated n− 2 times, the number of siblings of
the last (rightmost) node in the tree assuming children are
ordered from left to right. Intuitively, the time it takes to
launch the last process p in a flat tree with n nodes is the
delay for p’s parent to launch all p’s preceding siblings plus
the remote launch time it takes p’s parent to launch p. This
can be formalized as:

launch(p, flatn) = (|presib(p, flatn)| ∗ SEQ)

+REM (2)

where presib(p, t) is the set of preceding siblings of process
p in tree t and flatn is a tree hierarchy with n processes.

C. Modeling Arbitrary Trees

Finally, to model the process launch of arbitrary trees,
we construct a model for determining the time necessary to
launch any process within any given tree. Therefore, this
encompasses balanced trees and skewed trees as well as
chain and flat trees. For an arbitrary tree, we still rely on
remote launch time, REM and sequential wait time, SEQ.
However, we must identify the number of repetitions of these
components for any given process in any given tree.

To identify the number of repetitions of REM and SEQ,
we define a recursive model. To build this recursive model,
we observe that every child process in a given tree can be
considered as the child of a flat tree rooted at the child’s
parent. So intuitively, the time to launch that child would
be the sum of the time required to launch the child’s parent
and the time to launch the child in the flat tree rooted by
the parent. Generally, the launch time of process p, a child
of process x in tree T is:

Figure 6. Modeling the launch of process p in an arbitrary tree of 5 nodes.

launch(p, T) = launch(x, T) + launch(p, t)

= launch(x, T) +

(|presib(p, t)| ∗ SEQ) +

REM (3)

where t is the flat tree rooted at process x.
As demonstrated by Figure 6, if we execute this recursion

up to the root of the entire tree, we see that REM must be
repeated for each ancestor of p in T : a process cannot be
created until its parent process is created; a process’ parent
cannot be created until the parent of the process’ parent has
been created and so on. We also observe that the creation
of the chain of processes on the path from x to the root of
the tree T are all delayed by the sequential delay, SEQ each
parent on the path must incur while creating the preceding
siblings of process p and the preceding siblings of each
ancestor of process p. Generally, the time to launch any
process p in a tree T is:

launch(p, T) = (|psas(p, T)| ∗ SEQ)

(|anc(p, T)| ∗REM) (4)

where psas(p, T)2 is the set that includes the preceding
siblings of process p and the preceding siblings of each
ancestor of process p in T .

Finally, we define Tn to be the set of all trees of n
nodes. The time required to launch tree t ∈ Tn is defined as:

launch(t) = maxn
p=1 launch(p, t) (5)

IV. OPTIMAL PROCESS LAUNCH TREES

For a given number of nodes, there are a vast number
of possible process launch trees. In this section, we present
an algorithm that inputs a process launching problem and
outputs an optimal process launch tree. By optimal, we
mean that the output tree is guaranteed to launch the given

2“psas” is shorthand for preceding siblings of self and ancestors.

100 1000 10,000 100,000
16-ary tree 1.8E-4 1.8E-3 1.8E-2 1.9E-1
greedy tree 2.5E-4 2.1E-3 2.3E-2 2.8E-1

Table I
TIME (SECONDS) TO CREATE A PROCESS LAUNCH TREE OF A GIVEN

NODE COUNT.

processes on the given nodes in a minimal amount of time
for a particular system. We also present a proof of our
algorithm’s optimality.

A. The Greedy Tree

We use a greedy algorithm to find an optimal process
launch tree3. Therefore, we call the resulting process launch
tree the greedy tree. Our greedy algorithm is inspired by
the construction of optimal-multicast trees described by
Park et al. [14]. Based on a model that incorporates the
necessary delay between subsequent transmissions from a
single process and inter-process communication latency,
Park et al used a dynamic-programming algorithm to create
optimal-multicast trees by combining smaller optimal trees
into larger optimal ones. Our greedy algorithm is based
on similar parameters that have been adapted to process
launching.

B. Greedy Algorithm

Figure 7 shows the pseudo code of the greedy algorithm
that creates the greedy tree. The algorithm takes a set of
nodes as input and returns a greedy tree to be used for
launching a set of processes, one per node, on each node
in the input set. As we discuss in Section IV-D, we assume
that the time for a process on any node to launch a process
on any other node is constant. This means we can treat all
nodes in the input set equally, and the order in which we
process nodes from the set does not matter. The first node
from the set is placed in the root position of the tree. At each
iteration of the algorithm, the launch time for the next child
of every node in the tree is modeled. Subsequent nodes are
processed iteratively from the input set and are added to the
tree by greedily choosing the position in the tree with the
smallest modeled launch time.

To keep track of the available positions, we use a heap
data structure of {position,time} pairs. This allows us con-
stant time lookup of the position with the smallest modeled
launch time and O(log n) time for the insertion of new
available positions. This allows the greedy algorithm to
complete in O(n log n) time. Due to the large number
of positions with non-unique launch times, the algorithm
is closer to Θ(n) in practice. Table I gives a comparison of
creation times between a greedy tree and a 16-ary tree. In
absolute values, the cost of executing the greedy algorithm

3There may be multiple process launch trees that satisfy the minimum
launch time requirement.

on large numbers of nodes is small, particularly when
compared to the actual times to launch processes on these
large numbers of processes, as we see in Section V.

C. Proof of Optimality
Intuitively, the greedy algorithm should produce an opti-

mal process launching tree, since, based on our assumptions,
all nodes are equal, and the algorithm places new nodes in
the tree in a position that results in the fastest launch time.
The algorithm tries to maximize the productivity of each
process, which results in a minimal launch time. If a parent
process is idle for long, its next child position eventually
will become the best next child position in the tree. If there
remain child processes to be created, at that point the parent
process will be assigned a child process to launch.

Our proof that the greedy algorithm produces an optimal
process launch tree is as follows: first, we prove that given
a set of nodes on which to launch processes, the range of
possible launch times is discrete (Lemma 2). Since there is
a discrete range of possible launch times, there is a total
ordering of these times, lowest to highest. Finally, we show
that the greedy algorithm will saturate the lowest unsaturated
launch time, before moving on to the next lowest unsaturated
launch time.

Operator Description
REM REM is the constant amount of time required be-

tween the instant a parent process begins to launch
a child process and the instant the created child
process is ready to create its first child.

SEQ SEQ is the constant amount of time required at a
parent process between the instants that process can
create two subsequent children processes.

Tn Tn is the set of all trees containing n nodes.
anc(p, t) anc(x, t) returns the set of ancestors of node x in

tree t. These are the set of nodes on the path from
the root to x, including the root but not x.

psas(x, t) psas(x, t) returns the set of nodes that includes all
the preceding siblings of each ancestor of node x
and all the preceding siblings of node x in tree t

available(t) available(t) returns the set of nodes that includes
the next available child position of each node in tree
t. If node x has 3 children, node x’s next available
child position is 4.

inf inf is the infinite tree, in which every node has an
infinite number of children. This tree is larger than
any other tree that can exist.

time[i] time[i] is the ith lowest value of
range(launch(inf)).

nodes[i] nodes[i] = {x : launch(x, inf) = time[i]
and x ∈ inf}

nodes[i] is the set of positions in the infinite tree
that will launch in time[i].

Definition 1. Let us create a new operation A ⊕ B where
A and B are sets:

A⊕B = {a + b : (a, b) ∈ A×B}

Note: The Cartesian Product is defined as
A×B = {(a, b) : a ∈ A and b ∈ B}.

for(each node):
Place node in position with the smallest modeled time
Calculate the modeled time of the next sibling
Calculate the modeled time of the first child

Figure 7. Pseudo code for our greedy algorithm that creates an optimal process launch tree.

Lemma 1. The range of A⊕B is discrete, when A and B
are both countably infinite sets.

Proof: The Cartesian product of two countably infinite
sets is a countably infinite set [15]. A ⊕ B creates one
value for each element of A × B. The size of the range
of A ⊕ B is bound between a finite number of values and
a countably infinite number of values. At the lower bound,
it is a finite set, and as such it is discrete. At the upper
bound, a countably infinite set can be put into a one-to-one
relationship with the natural numbers, which would make it
discrete. Either way, the range of A⊕B is discrete.

Lemma 2. The range of launch(h) is discrete.

Proof: According to Definition 5, launch(t) equals the
maximum launch time of the nodes in tree t. Let us label
the node that takes the longest time as max.
range(launch(t))

= range(launch(max, t)) (Eqn. 5)

= range(|psas(max, t)| ∗ SEQ
+ |anc(max, t)| ∗REM) (Eqn. 4)

= range(|psas(max, t)| ∗ SEQ)
⊕ range(|anc(max, t)| ∗REM) (Defn. 1)

= {nat ∗ SEQ : nat ∈ N}
⊕ {nat ∗REM : nat ∈ N}

range(launch(t)) is discrete (Lemma 1)

Definition 2. Let us label the Greedy tree which contains
n nodes as Gn. The Greedy tree is defined recursively:

For n = 1, G1 is the tree which only contains the root
node.

For n > 1, Gn = Gn−1 + x where
x ∈ available(Gn−1) and ∀y ∈ available(Gn−1),
launch(x, inf) ≤ launch(y, inf)

Definition 3. Given that op ∈ Tn, op is optimal if ∀t ∈
Tn, launch(op) ≤ launch(t).

Theorem 1. The greedy algorithm defined in Definition 2,
will create an optimal tree of n nodes.

Proof: By induction:
For n = 1: G1 is the tree comprised of only the root.

Since |T1| = 1, ∀t ∈ T1, launch(G1) ≤ launch(t), so G1

is optimal.
For n > 1: Gn is created by starting with Gn−1 and

adding a node to the position which results in the lowest
possible launch time. For increasing numbers of nodes, the
greedy algorithm first adds all of the nodes from nodes[x]
to the tree. Once all of the nodes in nodes[x] are in the tree,
the greedy algorithm moves on to the nodes in nodes[x+1].

The greedy algorithm is guaranteed to be able to add the
nodes in nodes[x + 1] to its tree because all of the nodes
that precede any of the nodes in nodes[x + 1] (ancestors,
preceding siblings, ...), will require less time than the nodes
in nodes[x + 1]. As such they will be in nodes[x] or
nodes[x− 1] or ... , and are already in the Greedy tree.

If Gn is not optimal, there would have to exist a tree
in Tn that launches faster than Gn. Let us label this faster
tree as fast. One way to define fast, is to describe how it
is different from Gn. Let us create a function, move(Gn),
which will create the tree fast by moving a node in Gn to
a new position (example: move a child node to a grand child
position). If launch(Gn) = time[i], move(Gn) can remove
a node, g, from Gn where launch(g,Gn) ≤ time[i], but
the lowest place g can be moved to is a position in nodes[i]
or nodes[i + 1]. If g is moved to a position in nodes[i],
launch(Gn) = launch(fast). If g is moved to a position
in nodes[i + 1], launch(Gn) < launch(fast). Either way,
fast is not faster than Gn, so Gn is optimal.

D. Discussion

The greedy tree is only optimal under certain conditions.
The first condition for optimality is the use of the pseudo
code in Figure 3. There are ways to alter this pseudo code
which could possibly result in faster launch times. For ex-
ample, instead of sequentially creating separate processes to
execute the individual launch commands, a tree of processes
could be used. Additionally, this pseudo code launches co-
located processes in a later phase. It might be possible to
create a faster tree, by intermixing the launch of remote and
co-located processes.

A second condition for the optimality of the greedy tree is
the assertion that the parameters REM and SEQ are constant
values. In reality, these values could increase as network
and/or file system congestion increases. Furthermore, the
physical network layout and machine differences may skew
these values. Launching a child node that shares the same
switch as its parent would be faster than launching a child

that does not share its parent’s switch. A tree that accounts
for these differences might prove to be faster.

V. EXPERIMENTS AND RESULTS

We had several motivational goals for the experiments we
performed: (1) we wish to validate our performance model
for tree-based process launching; (2) we wish to validate
empirically that our optimal greedy tree performs better than
others; (3) we wish to demonstrate the impact of choosing
an optimal process launch tree versus an arbitrary one, and
(4) we wish to evaluate the cost of executing our greedy
algorithm to determine an optimal tree.

A. LIBI: A Framework for Scalable, Flexible Process
Launching

LIBI provides a set of launch and communication ab-
stractions that are sufficient for bootstrapping and creates
a framework for implementing these abstractions [16]. It is
designed to sit between software systems and the underlying
launch and communication mechanisms. In this manner,
LIBI provides portability to the software system while
retaining the performance benefits of using the native bulk-
launch and communication services.

The version of LIBI which we used for this paper, relies
on individual launch services, namely rsh. The individual
launch version of LIBI, takes a host list as input, converts
the host list into a process launch tree, and launches one
process per node using rsh in a manner dictated by the
process launch tree. Once one process exists on each of the
requested nodes any co-located processes are then launched
locally.

B. Experimental Environment

All experiments were run on Lawrence Livermore Na-
tional Laboratory’s Atlas system. Atlas has 1,152 nodes,
each of which contains 8 AMD Opteron 2.4 GHz CPUs. The
nodes are interconnected via a double data rate InfiniBand
network. The Atlas system is managed by the SLURM
resource manager. The maximum job size is limited to 386
nodes.

C. Validating our Process Launch Performance Model

Recalling our process launch performance model from
Section III-C, the time required to launch tree t is:

launch(t) = maxn
p=1 launch(p, t)

where launch(p, t) is defined as:

launch(p, t) = (|psas(p, t)| ∗ SEQ)

(|anc(p, t)| ∗REM)

For our model validation experiments, the general pro-
cedure involves using LIBI to launch a test application
numerous times and compare the measured launch times

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 50 100 150 200 250 300 350 400

La
u

n
ch

 T
im

e
 (

se
co

n
d

s)

Process Count

Chain
Flat
Greedy
2-ary Tree
16-ary Tree
32-ary Tree

Figure 8. LIBI Launch Performance: The solid lines are measured values
while the dashed lines represent the modeled launch time. The modeled
launch times were created using the parameters: {0.007s, 0.172s}. This
resulted in a coefficient of determination of R2 = 0.999 between the
modeled and the measured values.

with the projected launch time according to our performance
model.

All experimental runs were executed on the same alloca-
tion of nodes. Primarily, this strategy simplifies the batch
scheduling requirements of our managed cluster environ-
ment. A second reason is that executing all tests in roughly
the same time frame and on the same resources helps
to ensure minimal environmental variations, for example
due to varied levels of network congestion. Lastly, this
strategy ensures that test runs do not occur concurrently,
eliminating possible inter-test interferences and contentions,
for example, contending for the same executable files on the
same file system.

One consequence of this strategy is that the test executable
is left in each node’s local file cache between test runs. Local
file caches are only cleared between separate allocations.
This forces us to adjust the parameters of our launch
model. Since the goal of the experiment is to validate the
launch model and its adaptability to different environmental
conditions, such adjustments are at the very least acceptable,
if not desirable.

For these experiments, we designed a small, standalone,
LIBI-based software system, comprised of two executables.
The first executable uses LIBI to launch the second exe-
cutable, which is 238 KB in size. These executables were
compiled to be statically-linked executables.

1) The Tests: We use this methodology to test two in-
dependent variables: process count and tree topology. Since
we deploy a single process per node, the maximum process
count is limited by the system’s maximum job size limit: 386
nodes. We test chain, flat, greedy, 2-ary (or binary), 16-ary
and 32-ary trees. Each experimental scenario was executed

0

1

2

3

4

5

6

7

8

0 32000 64000 96000 128000

M
o

d
e

le
d

 L
au

n
ch

 T
im

e
 (

se
co

n
d

s)

Node Count

Chain

Flat

Greedy

2-ary

8-ary

16-ary

32-ary

64-ary

128-ary

Figure 9. Modeled launch time with the executable on the server.

ten times and averaged.
As described in Section IV-B, the greedy algorithm re-

quires us to set the SEQ and REM parameter values. We
use the 2-tuple, {SEQ, REM}, to represent these values.
We obtained values for these parameters by measuring and
averaging these metrics from a small number of simple
process launching experiments using the LIBI framework.
The specific values obtained were {0.015s, 0.227s}.

2) The Results: The results of these experiments are
shown in Figure 8. In this figure, solid lines represent
measured performance and dashed line represents modeled
performance. Our modeled performance tracts very precisely
to our measured performance data. In fact, the parameters
used to create our greedy tree differed from the parameters
used in the launch time performance models.The greedy
algorithm used the parameter values, {0.015s, 0.227s}, ob-
tained from averages from a single test run of multiple
launches. These turned out to be overestimates of the values,
{0.007s, 0.172s}, from the actual experiments. We suspect
the differences be caused by different levels of noise in
the system at the time. In spite of the differences, the
model produced from these values had a coefficient of
determination of R2 = 0.886, an indication that our model
can tolerate system noise to some extent. The parameters
used in Figure 8 are the result of a least-squares fit of
Equation 4 to the actual data.

D. Evaluating Process Launch Tree Topologies

We now use our validated performance model to evaluate
the impact that a process launch tree topology has on the
bulk process launch performance. Using modeled launch
times allow us to execute a larger, more comprehensive suite
of experiments in an easier and faster manner. Additionally,
we can project results for system scales orders of magnitude
larger than the test machines.

0

1

2

3

4

5

0 32000 64000 96000 128000

M
o

d
e

le
d

 L
au

n
ch

 T
im

e
 (

se
co

n
d

s)

Node Count

Chain

Flat

Greedy

2-ary

8-ary

16-ary

32-ary

64-ary

128-ary

Figure 10. Modeled launch time with the executable in the local cache.

1) The Tests: For each test in this experiment, we first
create a process launch tree of a specified topology. Then
we use our performance model to project the time to launch
that tree. Once again, the independent variables we vary
are process count and tree topology. However, unlike in the
previous experiments that needed to be validated empirically,
we can vary process counts to much greater extents, from(
24 − 1

)
to

(
217 − 1

)
. These values correspond to the

number of nodes in a full 2-ary tree of increasing depth.
We also expanded the coverage of topologies that we test to
include 64-ary and 128-ary trees.

For these experiments, the values used for {SEQ, REM}
reflected two different launch environments. The first set
{0.013s, 0.485s}, reflects launching a 1.6M executable from
an NFS server. The second pair {0.015s, 0.227s}, reflects
launching a 155K executable when it is in the local file
cache. These values were created by performing a single test
run at 386 nodes, in each environment, timing the relevant
portions of code, and taking the average.

2) The Results: The results of these experiments are
shown in Figures 9 and 10. The first rather-obvious obser-
vation is that both the chain and flat tree topologies are
poor performers and must be avoided at large scale. Indeed,
existing infrastructures that use these strategies for simplicity
demonstrate poor scaling behavior.

Secondly, it shows the greedy tree outperforms all other
trees in all scenarios, corroborating our proof. Thirdly,
while the relative performance improvements of our greedy
algorithm over other techniques are dramatic, the abso-
lute differences are not as impactful. For example, at the
largest process count, the differences range from 70% better
than the second best to 360% better than the worse, non-
degenerate case, the absolute differences are only on the
order of a few seconds. We attribute that to the perfor-
mance of the underlying sequential launch mechanism being

0

10

20

30

40

50

60

70

80

90

0 500 1000 1500 2000 2500 3000

M
R

N
et

 B
o

o
ts

tr
ap

 T
im

e
 (

se
co

n
d

s)

Process Count

Current MRNet

LIBI Flat

LIBI 2-ary Tree

LIBI 16-ary Tree

LIBI Greedy

Figure 11. MRNet Bootstrap Time vs. Process Count. MRNet has a fanout
of 16.

used. While rsh can be extremely fast, ssh relies on
authentication and authorization mechanisms that can make
even single ssh connections take seconds to establish. The
poorer the performance of the underlying sequential launch
mechanism, the greater the absolute impact of choosing an
optimal launch topology will be.

Our final observation from these experiments is that the
performance of the k-ary trees changes dramatically with
the the value of REM. This is most readily apparent when
comparing the 2-ary tree and the 128-ary tree. In Figure 9
the 2-ary tree takes almost twice as long to launch a tree
at any node count. In contrast, Figure 10 shows the 2-ary
tree always launching faster than the 128-ary tree. The same
relative-performance reversal can be seen between the 8-ary
tree and the 32-ary tree. This is due to the fact that lower
k-values have taller trees, and therefore their launch time is
dominated more by REM. This means that the best k-values
are system and environment dependent, so if arbitrary k-
values are chosen for a launch strategy that always uses a
k-ary tree, launch performance may suffer dramatically.

E. A Real Case Study: Improving MRNet Startup

Our final evaluation of process launch involves integrating
our framework into a real infrastructure. For these experi-
ments, we integrated our LIBI framework into MRNet [17].
MRNet is a software overlay network that provides efficient
data multicast and reduction communications for distributed
software systems. MRNet uses a tree of processes between
the application’s front-end and back-ends to improve group
communication performance. The tree also is used to dis-
tribute important activities, like data reductions and data
analysis, keeping front-end loads manageable.

In the old version, MRNet used a bootstrap mechanism in
which parent processes create their children processes using
rsh in as concurrent a fashion as possible. We modified

0

10

20

30

40

50

60

70

80

90

56 120 248 504 1016 2040 3080

Ti
m

e
 (

se
co

n
d

s)

Process Count

MRNet TBON Formation

LIBI Communication

LIBI Greedy Launch

Preparation for LIBI

Current MRNet Launch

Parse MRNet Topology

Figure 12. A Breakdown of MRNet’s Bootstrap Time vs. Process Count.
MRNet has a fanout of 16. Left columns are the current MRNet version
while the right are MRNet over LIBI.

MRNet to use LIBI for creating the tree processes and for
disseminating the topology information needed for children
processes to form the tree-based overlay network by estab-
lishing connections with their parents. Previously, MRNet’s
start-up process integrated process launch and information
dissemination: when a parent created its children, it passed
on the command line the necessary port information the
children needed to establish a connection with the parent.
LIBI completely separates the process launch and infor-
mation dissemination interactions. In the new LIBI-based
MRNet the LIBI session master gathers the relevant start-up
information and then scatters it to relevant session members.

1) The Tests: The general strategy of this experiment is to
evaluate the time it takes to bootstrap MRNet under varying
conditions. There are three independent variables: process
count, bootstrap mechanism, and MRNet fanout. The first
variation in bootstrap mechanism is the current version of
MRNet versus the new MRNet over LIBI. MRNet over
LIBI is further varied by using different process launch tree
topologies – flat, 2-ary, 16-ary and greedy. The parameters,
{0.013s, 0.485s}, used to create the greedy tree were from
the NFS server scenario in the previous section.

Each test run was given its own allocation of 386 nodes
regardless of the actual number of nodes needed. This
accomplished several things. First, this means that each test
run occupies a third of Atlas. This reduces the network
congestion caused by other users. Second, this makes it
unlikely that two test runs will run concurrently. Atlas is
a fully-utilized machine, even at night and on the weekends.
Third, the separate allocations mean that the file cache is
cleared between each test run. There could still be some
caching that occurs on the server, but this cannot be easily
avoided.

The executables being launched include the program for

0

20

40

60

80

100

120

140

0 5 10 15 20 25 30 35

M
R

N
e

t
B

o
o

ts
tr

ap
 T

im
e

 (
se

co
n

d
s)

MRNet Fanout

Current MRNet

MRNet over LIBI

Figure 13. MRNet Bootstrap Time vs. MRNet Fanout. Using a total of
3080 processes.

MRNet’s communication (intermediary) processes and the
program for our MRNet back-end (leaf) processes. All
executables were compiled using the archived version of the
needed libraries.

We ran two tests using MRNet. The first test kept
MRNet’s fanout constant at 16, while varying the process
count. The process count includes MRNet’s communication
daemons as well as our back-end daemons. Varying the
process count will show the scalability of each launching
mechanism, when bootstrapping MRNet. The second test
kept the process count constant at 3080, while varying
MRNet’s fanout. This will show the affect of MRNet’s
fanout on its bootstrapping performance.

To mitigate the affect of intermittent network congestion
on a single test case, each bootstrapping condition was
executed in order, for each test condition. This sequence
of test runs was repeated three times, and averaged per test
case. To increase the process counts, all test were run with
8 processes per node.

2) The Results: We ran two tests using MRNet. The
first test kept MRNet’s fanout constant at 16, while varying
the process count. The process count includes MRNet’s
communication daemons as well as our back-end daemons.
Varying the process count will show the scalability of
each launching mechanism, when bootstrapping MRNet.
The second test kept the process count constant at 3080,
while varying MRNet’s fanout. This will show the affect of
MRNet’s fanout on its bootstrapping performance.

To mitigate the affect of intermittent network congestion
on a single test case, each bootstrapping condition was
executed in order, for each test condition. This sequence
of test runs was repeated three times, and averaged per test
case. To increase the process counts, all test were run with
8 processes per node.

0

20

40

60

80

100

2 8 16 32

Ti
m

e
 (

se
co

n
d

s)

MRNet Fanout

MRNet TBON Formation

LIBI Communication

LIBI Greedy Launch

Preparation for LIBI

Current MRNet Launch

Figure 14. A Breakdown of MRNet’s Bootstrap Time vs. MRNet Fanout.
Using a total of 3080 processes. Left columns are the current MRNet
version while the right are MRNet over LIBI.

Analysis: Figure 11 shows the scalability of each boot-
strapping condition when MRNet has a fanout of 16. MRNet
over LIBI performs the best, for all launch hierarchies,
followed by the current version of MRNet. That being said,
all of the bootstrapping conditions appear to scale linearly.

Figure 12 shows the breakdown of the MRNet bootstrap
timings for the current version of MRNet and MRNet over
LIBI using the greedy tree. The functionality related to each
Section is described in Table II. The cause of the linear
scaling is apparent when viewing the timing breakdown.
The largest portion of MRNet’s bootstrapping is the ”Parse
MRNet Topology” component and the ”MRNet TBON
Formation”. Both of these tasks scale linearly, each taking
approximately 0.009 seconds per node.

As for LIBI, the biggest component involves translating
the MRNet topology back into a host list. This is the
”Preparation for LIBI” component, which scales linearly,
taking about 0.004 seconds per node. The ”LIBI Greedy
Launch” component scales less than linearly and the ”LIBI
Communication” component never took more than an eighth
of a second.

Figure 13 shows the results of changing MRNet’s fanout,
while holding the process count constant at 3080. Here we
see that the bootstrapping time of the current version of
MRNet changes with the fanout, but MRNet over LIBI
remains relatively constant. This alleviates most of the
bootstrap performance concerns when choosing an MRNet
topology.

Figure 14 shows the breakdown of the Figure 13 timings.
The ”Parse MRNet Topology” component was removed
because it was the same for both the current version of
MRNet and MRNet over LIBI. This also serves to highlight
the comparison between the relevant portions of code.

The only significant difference in MRNet over LIBI per-

Name Description
MRNet TBON
Formation

Connect MRNet child processes to their parent.

LIBI Communi-
cation

Distribute the connection setup information to
all of the nodes, using LIBI’s greedy tree.

LIBI Greedy
Launch

Launch the communication and back-end pro-
cesses on the requested nodes, using LIBI’s
greedy tree.

Preparation for
LIBI

Translate MRNet’s topology representation into
a host list for LIBI.

Current MRNet
Launch

The current version of MRNet intermixes the
launch, communication, and TBON formation.

Parse MRNet
Topology

Parse MRNet’s topology file.

Table II
DESCRIPTION OF THE COMPONENTS IN FIGURE 12 AND FIGURE 14.

formance occurs with an MRNet fanout of two. Here, both
the ”Preparation for LIBI” and ”MRNet TBON Formation”
are smaller than the other fanouts, while the ”LIBI Greedy
Launch” is just slightly larger. One potential reason for why
the ”MRNet TBON Formation” component is smaller is be-
cause each parent only has to accept two child connections.
This means there is a reduced chance of network resource
contention. The ”LIBI Greedy Launch” is slightly larger due
to the ratio between communication and back-end processes.
With a fanout of two, 1

2 of MRNet’s total processes are
communication processes. With a fanout of eight, only 1

8
of MRNet’s total processes are communication processes.
Due to the scalability of the greedy tree, launching a large
topology and a small topology is faster than launching two
equal-sized topologies.

VI. CONCLUSION

Process launching is part of the bootstrapping phase,
which is on the critical path of many HPC applications and
tools. In this paper, we designed an algorithm for creating an
optimal process launching strategy. Our process launching
strategy uses a greedy algorithm and thus the resulting
process launch tree is called the greedy tree. We proved that
the greedy tree was indeed optimal for process launch under
certain conditions, all of which are reasonable in practice.

The main impact of this work is that we have devised a
cheap, efficient strategy for determining the optimal way
for launching large numbers of processes in large scale
computing systems. This strategy is particularly useful in
computing environments that are not managed by a resource
manager. Additionally, these research concepts can be used
by resource managers to influence the way they launch
processes. As we continue to look for ways to improve
application and tool performance on large scale systems,
there are a variety of related ways in which we can extend
this work.

Future Research Directions
Currently, the greedy tree relies on user supplied pa-

rameters. As evidenced by the discussion in Section V-C,
user supplied parameters are not likely to be accurate. A
better approach would be to generate the REM and SEQ
parameters during the configuration of the application. Since
these parameters are application and system dependent, the
correct values should remain constant once the application
has been installed on the system. With the correct application
specific parameters, the performance of the greedy tree
should improve. This would also remove the burden from
the user, of choosing model parameters.

Large Multi-Core Computer Optimization: One corollary
of the trend of ever increasing processors counts in extreme-
scale systems, is the trend of increasing processor counts in
individual computers. The platform that we tested on only
had 8 cores per node. Future systems are expected to have
100s if not 1000s of cores.

This trend of increasing numbers of processing cores
on a single node, may yield additional opportunities for
optimizing process launch. As discussed in Section IV, the
greedy tree’s current approach is to sequentially execute
the individual launches that originate from the same node.
Multicore systems provide an opportunity for a single node
to concurrently execute multiple remote launches. This ap-
proach should prove to be faster, up to the point where the
network interface becomes saturated.

ACKNOWLEDGEMENTS

This work was supported in part by Lawrence Livermore
National Security, LLC subcontract B590510. This work was
performed under the auspices of the U.S. Department of
Energy by Lawrence Livermore National Laboratory under
contract DE-AC52-07NA27344 (LLNL- CONF-485781).

REFERENCES

[1] “Top 500 Supercomputer Sites,” http://www.top500.org/
(visited September 2011). [Online]. Available:
http://www.top500.org/

[2] “Sequoia,” https://asc.llnl.gov/computing resources/sequoia/
(visited May 2011). [Online]. Available:
https://asc.llnl.gov/computing resources/sequoia/

[3] P. Kogge, “ExaScale Computing Study: Technology Chal-
lenges in Achieving Exascale Systems,” Defense Advanced
Research Projects Agency Information Processing Techniques
Office (DARPA IPTO), Tech. Rep., September 2008.

[4] D. C. Arnold, D. H. Ahn, B. R. de Supinski, G. Lee, B. P.
Miller, and M. Schulz, “Stack Trace Analysis for Large
Scale Applications,” in 21st IEEE International Parallel &
Distributed Processing Symposium (IPDPS ’07), Long Beach,
CA, March 2007.

[5] “IBM Tivoli Workload Scheduler LoadLeveler,”
http://www-03.ibm.com/systems/software/loadleveler (vis-
ited May 2011). [Online]. Available: http://www-
03.ibm.com/systems/software/loadleveler/

[6] “Platform LSF,” http://www.platform.com/workload-
management/high-performance-computing (vis-
ited May 2011). [Online]. Available:
http://www.platform.com/workload-management/high-
performance-computing

[7] “PBS,” http://www.pbsworks.com/ProductPBSWorks.aspx
(visited May 2011). [Online]. Available:
http://www.pbsworks.com/ProductPBSWorks.aspx

[8] M. A. Jette and M. Grondona, “SLURM: Simple Linux Utility
for Resource Management,” in ClusterWorld Conference and
Expo, San Jose, California, June 2003.

[9] J. K. Sridhar, M. J. Koop, J. L. Perkins, and D. K. Panda,
“ScELA: Scalable and Extensible Launching Architecture
for Clusters,” in 15th International Conference on High
performance Computing, ser. HiPC’08. Berlin, Heidelberg:
Springer-Verlag, 2008, pp. 323–335. [Online]. Available:
http://portal.acm.org/citation.cfm?id=1791889.1791925

[10] A. Gupta, G. Zheng, and L. V. Kalé, “A Multi-Level Scalable
Startup for Parallel Applications,” in Proceedings of the 1st
International Workshop on Runtime and Operating Systems
for Supercomputers - ROSS ’11. New York, New York,
USA: ACM Press, 2011, pp. 41–48. [Online]. Available:
http://portal.acm.org/citation.cfm?doid=1988796.1988803

[11] N. Adiga, G. Almási, G. Almasi, Y. Aridor, R. Barik,
D. Beece, R. Bellofatto, G. Bhanot, R. Bickford, M. Blum-
rich, and Others, “An overview of the BlueGene/L supercom-
puter,” in Proceedings of the 2002 ACM/IEEE conference on
Supercomputing, vol. 00, no. c. Los Alamitos, CA: IEEE
Computer Society, 2002, pp. 1–22.

[12] M. Karo, R. Lagerstrom, M. Kohnke, and C. Albing, “The
Application Level Placement Scheduler,” in Cray User Group,
2006, pp. 1–7.

[13] R. Butler, W. Gropp, and E. Lusk, “Components and inter-
faces of a process management system for parallel programs,”
Parallel Computing, vol. 27, no. 11, pp. 1417–1429, 2001.

[14] J. Park, H. Choi, N. Nupairoj, and L. Ni, “Construction of
optimal multicast trees based on the parameterized commu-
nication model,” in 1996 ICPP Workshop on Challenges for
Parallel Processing. IEEE Comput. Soc. Press, 1996, pp.
180–187.

[15] B. Bacarisse, “The Cartesian Product of a
Finite Number of Countable Sets is Countable,”
http://planetmath.org/?op=getobj&from=objects&id=7142
(visited July 2011). [Online]. Available:
http://planetmath.org/?op=getobj&from=objects&id=7142

[16] J. Goehner, D. Arnold, D. Ahn, G. Lee, B. de Supinski,
M. LeGendre, M. Schulz, and B. Miller, “A
Framework for Bootstrapping Extreme Scale Software
Systems,” in Workshop on High-performance Infrastructure
for Scalable Tools, Tucson, Arizona, 2011. [On-
line]. Available: http://ics11.cs.arizona.edu/workshops/whist-
2011/papers/whist-2011-goehner.pdf

[17] P. C. Roth, D. C. Arnold, and B. P. Miller, “MRNet: A
Software-Based Multicast/Reduction Network for Scalable
Tools,” in 2003 ACM/IEEE conference on Supercomputing
(SC ’03). Phoenix, AZ: IEEE Computer Society, November
2003, p. 21.

